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9 This paper presents three-dimensional static modeling of the
10 human lumbar spine to be used in the formation of anatomically-
11 correct movement patterns for a fully cable-actuated robotic
12 lumbar spine which can mimic in vivo human lumbar spine move-
13 ments to provide better hands-on training for medical students.
14 The mathematical model incorporates five lumbar vertebrae
15 between the first lumbar vertebra and the sacrum, with dimensions
16 of an average adult human spine. The vertebrae are connected to
17 each other by elastic elements, torsional springs and a spherical
18 joint located at the inferoposterior corner in the mid-sagittal
19 plane of the vertebral body. Elastic elements represent the liga-
20 ments that surround the facet joints and the torsional springs rep-
21 resent the collective effect of intervertebral disc which plays a
22 major role in balancing torsional load during upper body motion
23 and the remaining ligaments that support the spinal column. The
24 elastic elements and torsional springs are considered to be non-
25 linear. The nonlinear stiffness constants for six motion types were
26 solved using a multiobjective optimization technique. The quanti-
27 tative comparison between the angles of rotations predicted by
28 the proposed model and in the experimental data confirmed that
29 the model yields angles of rotation close to the experimental data.
30 The main contribution is that the new model can be used for all
31 motions while the experimental data was only obtained at discrete
32 measurement points. [DOI: 10.1115/1.4007172]
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34 1 Introduction

35 The art of palpation is usually taught by using human patients
36 who are palpated by the instructor for demonstrative purposes.
37 Medical students watch the process and palpate each other, gener-
38 ally with limited dysfunctions. It is difficult to find and demon-
39 strate patients for every dysfunction taught. There exists no
40 assessment device to objectively evaluate clinical palpation of stu-
41 dents. To enhance palpation teaching assessment, a cable-actuated
42 robotic lumbar spine (RLS) is currently under development [1].
43 The current study involves lumbar spine movement patterns to
44 define RLS motions under different loading conditions.
45 Studies for mathematical modeling of the thoracic, lumbar and
46 thoracolumbar spine include [2–12]. Reference [8] developed the
47 first static 3D model for spine nonlinear force analysis. The
48 authors used a stiffness method considering the vertebrae as rigid
49 bodies connected with deformable elements having axial, tor-
50 sional, bending and shear resistance. In a continuation [9], the
51 authors emphasized the kinematic constraints role of facet joints.
52 Facets and the ligaments carry loads in bending and torsion [10]
53 performed a lumbar spine static simulation based on experimental
54 data in Ref. [11]. They simulated ligamentous and nonligamen-
55 tous soft tissue using linear springs, whereas nonlinear behavior

56is expected [12] used a L3-L4 segment finite element model to
57analyze the facet orientation sensitivity and the initial joint gap
58between facets. Both parameters affected the facet load.
59In this paper, a model of the human lumbar spine using nonlinear
60elastic elements and torsional springs based on experimental data is
61proposed. The purpose is to create a model that accurately estimates
62the movement patterns of the lumbar vertebrae under externally-
63applied forces and moments. The experimental data used presents
64vertebral motion at discrete values. The proposed model estimates
65movement patterns continuously, i.e., for any applied moment. The
66model’s validation and simulation results are presented.

672 Methods

682.1 Construction of the Lumbar Spine Geometry. The
69lumbar spine geometry has average human dimensions based on
70experimental data [1]. All geometry parameters have been previ-
71ously used in the literature, except for the facet plane and facet
72plane angle. Assuming sagittal symmetry, we define a facet plane
73that connects the four facet centers. This plane allows the attach-
74ment of posterior elements with various dimensions, making the
75system modular. The facet plane angle is the angle between the
76facet plane and the vertebral body posterior wall. A cylindrical
77shape is assumed for vertebral bodies. Figure 1 shows the facet
78plane angle and cylindrical vertebral body. The lumbar spine
79geometry is shown in Fig. 2.

802.2 Mathematical Model. The mathematical model includes
81five lumbar vertebrae and the sacrum, ten elastic elements that
82connect inferior facets of one vertebra to the superior facets of the
83lower one and 15 torsional springs that represent the collective
84torque-resisting effects of the intervertebral disc and the liga-
85ments. The significant motion of the vertebrae during spinal
86movement is rotational [11–13]. Therefore, a spherical joint
87connects vertebrae. This joint location is critical to provide
88anatomically-correct motion for each vertebra during overall lum-
89bar movement. The spherical joints are located at the inferoposte-
90rior corners of the vertebral bodies because the experimental data
91used is Ref. [13]. In that reference, the inferoposterior corner of

Fig. 1 Facet plane and angle

Fig. 2 3D Geometry of the lumbar spine [1]
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92 each vertebra is the coordinate frame origin for which the rotation
93 angles were recorded.
94 The equations of static equilibrium for forces and moments are
95 derived for each vertebra using the free-body diagram (Fig. 3).
96 Force equilibrium in the base frame {B} can be written as:

X
BFi ¼ mi

Bgþ BFsrfi þ BFslfi þ BFirfi
þ BFilfi þ BRi � BRiþ1

¼ �BFexti (1)

97 mi is the i-th vertebra mass, Bg ¼ f0� 9:81 0gT
is the gravity

98 vector, BFsrfi ,
BFslfi

, BFirfi ,
BFilfi are the forces due to the elastic

99 element connected to the superior right facet, superior left facet,
100 inferior right facet and inferior left facet, and BRi is the spherical
101 joint reaction force. BFexti is the external force applied to the i-th
102 vertebra center of gravity.
103 As in Ref. [13], the external forces are all zero except for one at
104 the uppermost vertebra L1. This 100-Newton compressive force
105 represents partial torso weight. This external force’s line of action
106 passes through the centers of gravity of first lumbar and first sacral
107 vertebra during motion. The elastic elements forces connecting
108 the facets in Eq. (1) are:

BFsrfi ¼ B
i R ksrfi

i
iþ1Riþ1Pirfiþ1

� iPsrfi

�� ��� G
� �� �

iûsrfi

BFslfi ¼ B
i R kslfi

i
iþ1Riþ1Pilfiþ1

� iPslfi

�� ��� G
� �� �

iûslfi

BFirfi ¼ B
i R kirfi

i
i�1Ri�1Psrfi�1

� iPirfi

�� ��� G
� �� �

iûirfi

BFilfi ¼ B
i R kilfi

i
i�1Ri�1Pslfi�1

� iPilfik � G
�� �� �

iûilfi

�
(2)

B
i R is the rotation matrix giving the orientation of frame {i} with

109 respect to {B}, using X-Y-Z (a, b, c) Euler angles:

B
i R ¼

cbcc �cbsc sb
sasbccþ casc �sasbscþ cacc �sacb
�casbccþ sasc casbscþ sacc cacb

2
4

3
5 (3)

110 where ca¼ cosa, cb¼ cosb, cc¼ cosc, sa¼ sina, sb¼ sinb,
111 sc¼ sinc.
112 The remaining variables in Eq. (2) are: G¼ 2 mm [14,15] is the
113 facets joint gap (equal to the unstretched springs length when
114 the lumbar spine is upright), iPirfi ,

iPilfi ,
iPsrfi ,

iPslfi are the facet
115 centers position vectors with respect to local vertebral frame {i}
116 (Fig. 3), ksrf is the stiffness constant, and iûsrfi is the unit vector in
117 the local vertebral frame {i} that defines the force line of action in
118 the corresponding elastic element. The remaining forces and stiff-
119 ness constants are defined similarly.
120 The static equilibrium equations for the moments about the
121 local frame {i} are:

X
iMi ¼ iMs þ iPCGi

� i
BRBFexti

� �
þ iPCGi

� i
BR mi

Bg
� �

þ iPsrfi � i
BRBFsrfi

� �
þ iPslfi � i

BR BFslfi

� �

þ iPirfi
� i

BRBFirfi

� �
þ iPilfi � i

BR BFilfi

� �

� iPSi
� i

BR BRiþ1

� �

¼ �iMexti

(4)

iMs ¼ fiMsxi

iMsyi

iMszi
gT

is the moment vector due to torsional
122springs attached to the i-th vertebra, iMsxi

¼ �ksxi
qxi is the

123moment due to the torsional spring about the x-axis, ksxi
is the

124spring constant of the torsional spring about the x-axis and qxi is
125the angular displacement. iMsyi

and iMszi
are the same way as

iMsxi
using y- and z- axes. iPCG and iPS are the position vectors

126from the local origin to the center of gravity and center of the
127socket in {i} (Fig. 3).

1282.3 Experimental Data. The simulation results to validate
129the proposed model are based on experimental data in Ref. [13].
130These researchers used fresh-frozen lumbosacral-spine specimens
131with only ligamentous soft tissue to test lumbar spine mechanical
132behavior by constructing load-displacement curves for each verte-
133bra under specific loading conditions. Motion was induced by
134applying pure moments to the first lumbar vertebra. This moment,
135applied about one of the three axes of rotation, caused spine
136to flex/extend, bend or rotate axially. The applied moment magni-
137tude was 2.5, 5.0, 7.5 and 10 Nm. The data contained the transla-
138tion and rotation of each vertebra under the tested loading
139condition. It is emphasized once more, however, that the rota-
140tional motion remained dominant over the translational motion.
141A load-displacement data example for L3-L4 segment model vali-
142dation is in Table 1.

1433 Results

144In the first stage of validation, the nonlinear stiffness constants
145for the elastic elements and the torsional springs are calculated for
146static equilibrium using the experimental data for six motion types
147(flexion/extension, right/left torque, right/left bending). The static
148equilibrium equations, Eqs. (1) and (4), for all vertebrae (30 equa-
149tions total) are solved simultaneously numerically. The static
150equilibrium problem is converted into a multiobjective optimiza-
151tion problem by minimizing the equilibrium equations for each
152vertebra. The rotation angles for each vertebra for all six motion
153types and four different external moment values (2.5, 5.0, 7.5 and
15410.0 Nm) are known [13]. The stiffness constants are calculated

Fig. 3 Free-body diagram of a vertebra

Table 1 Experimental load-displacement data for L3-L4 [13]

External Moment, Mext (Nm) Motion (deg)

X Y Z X Y Z

Flexion 2.50 0.00 0.00 5.00 0.00 0.00
5.00 0.00 0.00 6.00 0.00 0.00
7.50 0.00 0.00 6.50 0.00 0.00

10.00 0.00 0.00 7.00 0.00 0.00

Extension �2.50 0.00 0.00 �1.50 0.00 0.00
�5.00 0.00 0.00 �2.25 0.00 0.00
�7.50 0.00 0.00 �2.00 0.00 0.00
�10.00 0.00 0.00 �2.75 0.00 0.00

Left Torque 0.00 2.50 0.00 0.75 0.50 0.25
0.00 5.00 0.00 1.13 1.00 0.38
0.00 7.50 0.00 1.25 1.63 0.50
0.00 10.00 0.00 1.75 1.75 0.63

Right Torque 0.00 �2.50 0.00 0.50 �0.88 �0.38
0.00 �5.00 0.00 �0.25 �1.75 �0.50
0.00 �7.50 0.00 0.50 �1.88 �0.75
0.00 �10.00 0.00 0.63 �2.00 �1.00

Right Bending 0.00 0.00 2.50 0.75 0.75 3.10
0.00 0.00 5.00 1.50 0.80 4.00
0.00 0.00 7.50 1.75 0.80 4.75
0.00 0.00 10.00 1.50 1.25 5.00

Left Bending 0.00 0.00 �2.50 �0.25 �0.60 �3.50
0.00 0.00 �5.00 0.60 �1.00 �4.50
0.00 0.00 �7.50 1.50 �1.00 �5.00
0.00 0.00 �10.00 1.40 �1.25 �5.50
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155 for each externally applied moment. Due to space limitations,
156 solved stiffness constants only for flexion are presented in Table 2.
157 The results for the remaining motion types can be found in
158 Ref. [14].

159After obtaining the stiffness constants at available loading con-
160ditions, curve fitting is applied to calculate stiffness values for any
161moment (not limited to the discrete experimental data). This curve
162fitting is based on a third degree polynomial:

Table 2 Nonlinear stiffness constants for flexion

Vertebra External Moment (Nm)a ksx
(Nm/rad) ksy

(Nm/rad) ksz
(Nm/rad) ksrf(N/m) kslf (N/m) kirf (N/m) kilf (N/m)

L5 2.50 36.40 0.00 0.00 390.26 386.46 0.77 0.75
5.00 27.88 0.00 0.00 376.52 373.70 1.44 1.32
7.50 26.53 0.00 0.00 271.03 274.90 1.17 48.26

10.00 24.08 0.00 0.00 350.54 350.54 1.48 1.48

L4 2.50 0.00 0.00 0.00 418.41 418.47 390.26 386.46
5.00 0.01 0.00 0.00 353.15 347.99 376.52 373.70
7.50 0.00 0.00 0.00 241.43 238.49 271.03 274.90

10.00 0.03 0.00 0.00 257.88 257.88 350.54 350.54

L3 2.50 0.00 0.00 0.00 178.34 172.89 418.41 418.47
5.00 0.13 0.00 0.00 113.76 111.09 353.15 347.99
7.50 0.00 0.00 0.00 65.50 40.42 241.43 238.49

10.00 0.00 0.00 0.00 48.21 48.21 257.88 257.88

L2 2.50 0.01 0.00 0.00 10.63 10.74 178.34 172.89
5.00 0.06 0.00 0.00 0.07 0.00 113.76 111.09
7.50 0.00 0.00 0.00 1.10 1.11 65.50 40.42

10.00 0.04 0.00 0.00 1.08 1.08 48.21 48.21

L1 2.50 75.26 0.00 0.00 0.00 0.00 10.63 10.74
5.00 102.03 0.00 0.00 0.00 0.00 0.07 0.00
7.50 122.56 0.00 0.00 0.00 0.00 1.10 1.11

10.00 139.47 0.00 0.00 0.00 0.00 1.08 1.08

aX component of the external moment. Y and Z components are all zero for flexion motion.

Fig. 4 Model versus experimental data (L3-L4 shown)
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k ¼ a �M3
ext þ b �M2

ext þ c �Mext þ d (5)

163 k is the stiffness constant (ksx
, ksy

, ksz
for torsional springs or ksrf,

164 kslf, kirf, kilf for elastic elements), Mext is the nonzero component
165 of the moment vector applied to the uppermost vertebra L1, and a,
166 b, c and d are the polynomial coefficients.
167 The second stage of validation is the comparison of the model
168 and experimental data. The model is tested under moments 2.50,
169 3.35, 4.20, 5.00, 5.85, 6.70, 7.50, 8.35, 9.20 and 10.00 Nm using
170 the stiffness constants obtained in the first stage by using Eq. (5).
171 The validation moment values include the experimental data
172 moments. Figure 4 shows the model output for the L3-L4 seg-
173 ment. The model closely follows the angle values for common
174 moment values tested, i.e., 2.5, 5.0, 7.5 and 10 Nm, typical of all
175 our results.
176 Figure 5 shows the absolute errors between the angles of rota-
177 tion predicted by the model and experimental data for the L3-L4
178 segment.

179 4 Discussion

180 A mathematical model that is validated by comparing its results
181 to experimental data becomes a powerful tool since the change of
182 parameters would be sufficient to modify a specific configuration
183 or a loading condition without repeating the experiment. The
184 purpose of this study was to create a tool to predict normal
185 anatomically-correct movement patterns for the human lumbar
186 spine. The proposed model, as seen from the results, closely fol-
187 lows the experimental data when they are available and predicts
188 the movement patterns for six different motion types continuously
189 for applied moment within 0–10 Nm.
190 The experimental or model data relating to the motion of the
191 spine varies from specimen to specimen [15]. For instance, when
192 the same motion model is tested with ligament stiffness values

193chosen from different experimental studies, the intersegmental
194rotation (L3-L4) results are significantly affected [16]. This vari-
195ability makes it even harder to compare results. In this model, the
196effect of the ligaments of the spine except for the facet capsulary
197ligaments was incorporated into three parameters (stiffness values
198of the torsional springs). To the authors’ knowledge, this aspect of
199the proposed model has not been employed in the literature. It is
200also noted that all parameters can be calculated for specific experi-
201mental data using the method detailed in this study. When using
202this method, care must be taken in terms of the placement of the
203spherical joints since that location must match the origin of the
204coordinate system with respect to which the experimental data
205were measured. The predicted response is sensitive to this location
206and may require additional effort to locate accurately [10].
207Though this model was derived to acquire anatomically-correct
208motion patterns for a robotic spine, it is general for other pseudo-
209static lumbar spine biomechanical applications. For example,
210the model predicts the displacement of any point on any lumbar
211vertebra, useful in studies of lumbar spine muscles length
212changes.
213There are limitations to the model. First, this model would
214not be reliable for motions with high accelerations, which require
215inertial forces, ignored in the proposed model and the referenced
216experimental data. Second, combined motion of the lumbar spine
217is not addressed in this model, requiring application of external
218moments about more than one axis. Accelerated and/or combined
219motions are seldom utilized during clinical diagnoses. The results
220are satisfactory for programming the RLS since it targets training
221medical students.
222The palpation of muscles and soft tissue is significant for
223palpatory diagnosis. The forces of the spinal muscles can be incor-
224porated into the model applying a force generation model and
225considering the attachment points on the bones and tendons. How-
226ever, deciding how the muscles would “feel” like (when touched

Fig. 5 Absolute error in model estimation of the experimental data (L3-L4 shown)
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227 by a physician) between those attachment points would be a quite
228 involved task. The ultimate goal of this model was to produce the
229 angles of rotations to be commanded to the robotic lumbar spine
230 as realistically as possible. Upon building the robotic lumbar
231 spine, the addition of the muscles and soft tissue will be per-
232 formed with strong collaboration of the faculty from the College
233 of Osteopathic Medicine at Ohio University. We have been work-
234 ing with DOs for a long time in matters that require their feedback
235 in terms of how normal or dysfunctional tissue would feel like. In
236 the past, we have had success in developing virtual training simu-
237 lations using their valuable feedback.
238 The RLS will be programmed to be controlled by a force-
239 feedback joystick. Via joystick motion, the angles of rotations
240 from this study will be commanded to the RLS, representing nor-
241 mal lumbar spine movement. Abnormalities from known dysfunc-
242 tional movement patterns will also be enabled.
243 In conclusion, a three-dimensional mathematical model to esti-
244 mate the normal movement patterns of the lumbar spine under dif-
245 ferent loading conditions was proposed. This model will be used
246 in programming of a cable-actuated Robotic Lumbar Spine for
247 training of medical students to identify normal and abnormal
248 movement patterns. Model parameters were obtained by using
249 previously-published experimental data and results validation
250 showed good agreement.
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